A Local Convergence Proof for the Minvar Algorithm for Computing Continuous Piecewise Linear Approximations

نویسندگان

  • Richard E. Groff
  • Pramod P. Khargonekar
  • Daniel E. Koditschek
چکیده

The class of continuous piecewise linear (PL) functions represents a useful family of approximants because invertibility can be readily imposed, and if a PL function is invertible, then it can be inverted in closed form. Many applications, arising, for example, in control systems and robotics, involve the simultaneous construction of a forward and inverse system model from data. Most approximation techniques require that separate forward and inverse models be trained, whereas an invertible continuous PL affords, simultaneously, the forward and inverse system model in a single representation. The minvar algorithm computes a continuous PL approximation to data. Local convergence of minvar is proven for the case when the data generating function is itself a PL function and available directly rather than through data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Lipschitz optimization based on gray-box piecewise linearization

We address the problem of minimizing objectives from the class of piecewise differentiable functions whose nonsmoothness can be encapsulated in the absolute value function. They possess local piecewise linear approximations with a discrepancy that can be bounded by a quadratic proximal term. This overestimating local model is continuous but generally nonconvex. It can be generated in its abs-no...

متن کامل

Adaptive multiresolution analysis based on anisotropic triangulations

A simple greedy refinement procedure for the generation of data-adapted triangulations is proposed and studied. Given a function f of two variables, the algorithm produces a hierarchy of triangulations (Dj)j≥0 and piecewise polynomial approximations of f on these triangulations. The refinement procedure consists in bisecting a triangle T in a direction which is chosen so as to minimize the loca...

متن کامل

Accurate Piecewise Linear Continuous Approximations to One-Dimensional Curves: Error Estimates and Algorithms

Local and global asymptotic L2 error estimates are derived for piecewise linear continuous approximations to smooth one-dimensional curves in R (n ≥ 1). Based on the estimates and an equidistribution strategy, an algorithm to construct a highly accurate piecewise linear approximation to a one-dimensional curve is devised with a special feature of achieving a desired L2 error. By its generality,...

متن کامل

Polynomial Approximations for Continuous Linear Programs

Continuous linear programs have attracted considerable interest due to their potential for modelling manufacturing, scheduling and routing problems. While efficient simplex-type algorithms have been developed for separated continuous linear programs, crude time discretization remains the method of choice for solving general (non-separated) problem instances. In this paper we propose a more gene...

متن کامل

Presentation of quasi-linear piecewise selected models simultaneously with designing of bump-less optimal robust controller for nonlinear vibration control of composite plates

The idea of using quasi-linear piecewise models has been established on the decomposition of complicated nonlinear systems, simultaneously designing with local controllers. Since the proper performance and the final system close loop stability are vital in multi-model controllers designing, the main problem in multi-model controllers is the number of the local models and their position not payi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2003